INTERNATIONAL A LEVEL

Statistics 3

Exercise 4A

1 a Let L be the length of a bolt. The distribution of L is unknown.
Variance of the sample $=\frac{\sigma^{2}}{n}=\frac{0.2^{2}}{100}=0.0004$
So using the central limit theorem $\bar{L} \approx \mathrm{~N}(3.03,0.0004)$
Using a calculator:
$\mathrm{P}(\bar{L}<3)=0.0668$ (4 d.p.)
b Let \bar{M} be the mean length of a bolt from a sample of n bolts. Then
$\bar{M} \sim \mathrm{~N}\left(3.03, \frac{0.2^{2}}{n}\right)$ and require $\mathrm{P}(\bar{M}<3)<0.01$
Standardise the sample mean

$$
\mathrm{P}(\bar{M}<3)=\mathrm{P}\left(Z<\frac{3-3.03}{\frac{0.2}{\sqrt{n}}}\right) \text { and require } \mathrm{P}\left(Z<\frac{3-3.03}{\frac{0.2}{\sqrt{n}}}\right)<0.01
$$

Using the table for the percentage points of the normal distribution (see Appendix, page 190):
$\mathrm{P}(Z<-2.3263)=0.01$
So $\frac{3-3.03}{\frac{0.2}{\sqrt{n}}}<-2.3263$
$\Rightarrow \frac{0.03 \sqrt{n}}{0.2}>2.3263 \quad$ (dividing by -1 so reversing the inequality)
$\Rightarrow \sqrt{n}>15.5086 \rightleftharpoons$
$\Rightarrow n>240.51$ Н
So $n=241$ is the minimum sample size required for $\mathrm{P}(\bar{M}<3)<0.01$
$2 \mu=\mathrm{E}(X)=\frac{1}{5}(1+2+3+4+5)=3$
$\sigma^{2}=\operatorname{Var}(X)=\frac{1}{5}\left(1+2^{2}+3^{2}+4^{2}+5^{2}\right)-\mu^{2}=\frac{55}{5}-9=2$
Using the central limit theorem $X \approx \mathrm{~N}\left(3, \frac{2}{40}\right)$
$\mathrm{P}(\bar{X}>3.2)=1-\mathrm{P}(\bar{X}<3.2) \approx 1-0.8145=0.1855$ (4d.p.)
3 a Let the random variable $S=$ score on the dice
$\mathrm{E}(S)=\frac{1}{6}(1+2+3+4+5+6)=\frac{21}{6}=3.5$
$\operatorname{Var}(S)=\frac{1}{6}\left(1+2^{2}+3^{2}+4^{2}+5^{2}+6^{2}\right)-3.5^{2}=\frac{91}{6}-\frac{49}{4}=\frac{182}{12}-\frac{147}{12}=\frac{35}{12}$
So by the central limit theorem, $\bar{S} \approx \sim \mathrm{~N}\left(3.5, \frac{35}{35}\right)$, i.e. $\bar{S} \approx \sim \mathrm{~N}\left(3.5, \frac{1}{12}\right)$
$\mathrm{P}(\bar{S}>4)=1-\mathrm{P}(\bar{S}>4)=1-0.9584=0.0416$ (4 d.p.)

Statistics 3

3 b Let the random variable $T=$ total score of 35 rolls of the dice, so $T=35 \bar{S}$

$$
\begin{aligned}
& \mathrm{P}(T<100)=\mathrm{P}\left(S<\frac{100}{35}\right) \\
& \mathrm{P}\left(S<\frac{100}{35}\right)=0.0130(4 \mathrm{~d} . \mathrm{p} .)
\end{aligned}
$$

4 Let the random variable $S=$ the number of sixes recorded in 30 rolls of the dice, so $S \sim \mathrm{~B}\left(30, \frac{1}{6}\right)$ Using the formula for the mean and variance of a binomial distribution $\mathrm{E}(S)=n p=30 \times \frac{1}{6}=5$
$\operatorname{Var}(S)=n p(1-p)=30 \times \frac{1}{6} \times \frac{5}{6}=\frac{25}{6}$
So by the central limit theorem $\bar{S} \approx \mathrm{~N}\left(5, \frac{25}{65}\right)$, i.e. $\bar{S} \approx \mathrm{~N}\left(5, \frac{1}{6}\right)$
And by calculator $\mathrm{P}(\bar{S}<4.5)=0.1103$ (4 d.p.)
5 a Probabilities sum to 1 so

$$
0.1+3 k+k+0.3=1 \Rightarrow 4 k=0.6 \Rightarrow k=0.15
$$

b $\mathrm{E}(X)=2 \times(3 \times 0.15)+3 \times 0.15+5 \times 0.3=2.85$
$\operatorname{Var}(X)=(4 \times 0.45+9 \times 0.15+25 \times 0.3)-2.85^{2}$

$$
=10.65-8.1225=2.5275
$$

So by the central limit theorem $\bar{X} \approx \mathrm{~N}(2.85,0.025275)$
And by calculator $\mathrm{P}(\bar{X}>3)=1-\mathrm{P}(\bar{X}<3) \approx 1-0.8273=0.1727$ (4 d.p.)
c Answer is an approximation, but as $n(=100)$ is large it will be fairly accurate.

INTERNATIONAL A LEVEL

Statistics 3

6 Let the random variable $S=$ score on the dice. Then $\mathrm{E}(S)=\mu=3.5$ and $\operatorname{Var}(S)=\sigma^{2}=\frac{\mathbf{3 5}}{12}$ So by the central limit theorem $\bar{S} \approx \sim N\left(3.5, \frac{35}{12 n}\right)$
Require $\mathrm{P}(\bar{S}<3.4)+\mathrm{P}(\bar{S}>3.6)<0.01$ and as the sample mean is normally distributed and symmetrical about the mean, this is equivalent to $\mathrm{P}(\bar{S}>3.6)<0.005$
Standardise the sample mean

$$
\mathrm{P}(\bar{S}>3.6)=\mathrm{P}\left(Z>\frac{0.1}{\sqrt{\frac{35}{12 n}}}\right) \text { and require } \mathrm{P}\left(Z>\frac{0.1}{\sqrt{\frac{35}{12 n}}}\right)<0.005
$$

Using the table for the percentage points of the normal distribution:

$$
\mathrm{P}(Z>2.5758)=0.005
$$

$$
\text { So } \frac{0.1}{\sqrt{\frac{35}{12 n}}}>2.5758
$$

$$
\Rightarrow \frac{\sqrt{12 n}}{10 \sqrt{35}}>2.5758
$$

$$
\Rightarrow \frac{12 n}{3500}>6.63474 \ldots
$$

$$
\Rightarrow n>1935.13 \rightleftharpoons
$$

So $n=1936$ is the minimum sample size required for $\mathrm{P}(\bar{S}<3.4)+\mathrm{P}(\bar{S}>3.6)<0.01$, i.e. for there being a less than 1% chance that the mean of all scores differs from 3.5 by more than 0.1

7 a The salaries in a company are unlikely to be symmetrically distributed so a normal distribution would not be a good model.
b Let the random variable $X=$ the salary of an employee. Then using the central limit theorem $\bar{X} \approx \sim \mathrm{~N}\left(28500, \frac{6800^{2}}{15}\right)$
i $\mathrm{P}(\bar{X}<25000)=0.0231$ (4 dp .)

$$
\text { ii } \begin{aligned}
& \mathrm{P}(25000<\bar{X}<30000)=\mathrm{P}(\bar{X}<30000)-\mathrm{P}(\bar{X}<25000) \\
&=0.80354-0.02311=0.7804(4 \mathrm{~d} . \mathrm{p} .)
\end{aligned}
$$

c The estimates are likely to be inaccurate given the distribution of employee salaries are unlikely to be normal and given the relatively small sample size.

8 Let the random variable T be the length of time taken to repair this particular fault. Assume the time taken to repair the fault is normally distributed. Then
$T \sim \mathrm{~N}\left(\mu, 2.5^{2}\right)$ and $\bar{T} \sim \mathrm{~N}\left(\mu, \frac{2.5^{2}}{n}\right)$ and require $\mathrm{P}(\bar{T}>\mu+0.5)=0.025$
Standardise the sample mean
$\mathrm{P}(\bar{T}>\mu+0.5)=\mathrm{P}\left(Z>\frac{\mu+0.5-\mu}{\frac{2.5}{\sqrt{n}}}\right)$ and so require $\mathrm{P}\left(Z>\frac{\sqrt{n}}{5}\right)<0.025$
Using the table for the percentage points of the normal distribution: $\mathrm{P}(Z>1.9600)=0.025$
So $\frac{\sqrt{n}}{5}>1.9600$
$\Rightarrow \sqrt{n}>9.8$
$\Rightarrow n>96.04$
So $n=97$ is the minimum sample size required.

